						Code No.: 22213 A	S
						EERING (Autonomous), HYDERABAD d Supplementary Examinations, June/July-2017	
Time	e: 3 hours	te · Answ				Engineering-II Max. Marks: 70 is in Part-A and any FIVE from Part-B	
				-		$\times 2 = 20 \text{ Marks})$	
1 Ex	plain sampli	ng and n		-	1= -		
						ack amplifiers?	
	ention the dr		-			•	
-	aw the equiv			*	•		
	fine A _C and						
6. M	ention the pr	oblems	of D.C.	amp	lifier		
	lculate the treeh that the ef					uired to match 8 ohms speaker load to an amplifier $3.2K\Omega$.	
8. M	ention the di	fferences	s betwe	en v	oltag	e and Power Amplifier.	
9. Pr	ove that low	pass circ	cuit act	s as	an Int	tegrator.	
10. Dr	aw the two l	level clip	per cir	cuit	and it	s output wave form with sinusoidal input signal.	
			1	Part-	B (5	\times 10 = 50 Marks)	
11. a)	Derive the	expressi	ons for	Z_{if} ,	Z _{of} o	f a voltage shunt feedback Amplifier.	
b)	feedback, a	an input	signal	of 50	mv i	s has a voltage gain of 100. It is found that without is required to produce a given output, whereas with 5V for same output. Determine A and β.	
12. a)		Phase S	hift Os	cilla	tor us	referred for low frequencies? Draw a neat Circuit ing BJT and derive the expression for minimum h _{fe}	
b)						s L=0.5H, C=0.06pF,C _m =1pF and Rs=5K find the cies and quality factor of the crystal.	
13. a)	Explain the	e operati	on of c	ircui	ts wh	ich improve CMRR in differential amplifiers.	
b)	A difference	ce ampli	fier has	a C	MRR	of 60 dB and $A_D=1000$. Fine A_C in dB.	
14. a)			-			plifier, explain the importance of the position of ing. Show that the conversion efficiency is 25%.	
b)		_			-	25 V, V_{CE} (min) = 5V. Find the overall efficiency for upled load.	
15. a)	Discuss the	e respon	se of th	e dif	feren	tiating circuit on a square wave and ramp input.	
						asing be used to clamp a wave form at a specified	
16. a)	Explain th	e effect	of nega	tive	feedb	ack on amplifier bandwidth.	

[5] a) Drift compensation techniques. [5]

[4]

b) Cross over distortion.

b) Define Barkhausen criterion and explain how it is satisfied in LC-Oscillators.

17. Write short notes on any two of the following:

c) Clamping circuit theorem. [5] *****